Comprendre notre simulateur d'émissions de CO2 évitées

August 9, 2024
explication du simulateur d'émissions de CO2

Ce simulateur a été conçu pour vous fournir des informations initiales afin d'évaluer la décarbonation de votre entreprise. Il ne reflète pas nécessairement des situations spécifiques et utilise des données standard fournies par différents organismes. Il a été créé à partir d'estimations publiées à ce jour. Si vous souhaitez obtenir plus de détails, veuillez nous contacter.

Voici quelques détails sur le développement du simulateur :

Périmètre de calcul des émissions de CO2 évitées

Dans le calcul des émissions de CO2 évitées, nous considérons que l'hydrogène utilisé est de l'hydrogène Lhyfe, qui est un hydrogène 100 % renouvelable produit par électrolyse de l'eau à partir d'un mix énergétique 100 % renouvelable. Notre calcul est basé sur les émissions du réservoir à la roue, c'est-à-dire celles produites par le fonctionnement du véhicule. Pour cela, nous utilisons les données de référence de l'Agence de l'environnement et de la maîtrise de l'énergie (Ademe) en France.

Un calcul couvrant l'ensemble du cycle de vie, y compris les émissions liées à la fabrication du véhicule, à la gestion de sa fin de vie, à la production du carburant et à son utilisation, serait plus précis. Cependant, à ce jour, il existe un manque d'études permettant de réaliser une telle évaluation. L'étude de Carbone 4 est la seule disponible jusqu'à présent, mais elle ne fournit des données que pour quelques types de véhicules.

Il est cependant important de noter que plus un véhicule est utilisé de manière intensive, plus l'empreinte carbone de son processus de fabrication est amortie. Par conséquent, notre calcul utilise une valeur moyenne.

Le plus grand contributeur à l'empreinte carbone est la fabrication du véhicule et de la batterie. Une voie étudiée pour améliorer l'empreinte carbone de la fabrication des batteries est de les produire dans des pays où l'électricité est faiblement carbonée.

Calcul de l'autonomie et du temps de charge

Nous échangeons régulièrement avec nos partenaires fabricants et suivons les évolutions dans les gammes de véhicules à hydrogène comme base de calcul.

Si vous êtes un fabricant de véhicules à hydrogène et souhaitez discuter de ces chiffres avec nous, veuillez nous contacter !

Un guide pour comprendre les véhicules à hydrogène
Un guide pour comprendre les véhicules à hydrogène

Ce guide complet explore les voitures à hydrogène, une alternative aux véhicules conventionnels à essence et électriques, offrant une solution prometteuse pour le transport durable. Il examine en détail les avantages et les éventuels défis des voitures à hydrogène.

Qu'est-ce qu'une voiture à hydrogène ?

Une voiture à hydrogène, également connue sous le nom de voiture à hydrogène ou de véhicule à hydrogène, utilise l'hydrogène comme source de carburant principal. Ces véhicules reposent sur des piles à combustible pour convertir l'hydrogène en électricité, qui alimente le moteur électrique pour conduire la voiture.

Comment fonctionnent les voitures à hydrogène ?

Les voitures à hydrogène utilisent un système de pile à combustible qui combine l'hydrogène avec l'oxygène de l'air. Cette réaction génère de l'électricité et de la vapeur d'eau, alimentant le véhicule sans produire d'émissions nocives.

Avantages des voitures à hydrogène

Les principaux avantages des voitures à hydrogène comprennent:

  • Zéro émissions nocives : Le seul produit secondaire est de la vapeur d'eau.
  • Ravitaillement rapide : prend environ 3-5 minutes, similaire aux véhicules à essence.
  • Autonomie élevée : jusqu'à 482-643 kilomètres avec un plein
  • Haute densité énergétique : l'hydrogène contient plus d'énergie par unité de masse que les carburants traditionnels.

Inconvénients des voitures à hydrogène

Certains défis associés aux voitures à hydrogène sont :

  • Disponibilité limitée : Moins de modèles disponibles par rapport aux véhicules à essence et électriques.
  • Coûts élevés : la technologie des piles à combustible est coûteuse, tout comme la production d'hydrogène.
  • Infrastructure de ravitaillement : Nombre limité de stations de ravitaillement en hydrogène.
  • Inefficacité énergétique : pertes lors de la production, du stockage et de la conversion de l'hydrogène

Sécurité des voitures à hydrogène

Les voitures à hydrogène subissent des tests de sécurité rigoureux, abordant des préoccupations telles que:

  • Stockage d'hydrogène : réservoirs haute pression conçus pour résister aux impacts et aux perforations.
  • Détection de fuites : Des capteurs avancés pour détecter et résoudre les fuites d'hydrogène.
  • Prévention incendie : des dispositifs d'arrêt de flamme et de libération de pression pour une ventilation contrôlée.

Production et stockage de carburant à l'hydrogène

L'hydrogène peut être produit par plusieurs méthodes, notamment:

  • Reformage du méthane à la vapeur : Extraction d'hydrogène à partir du gaz naturel
  • Électrolyse : Séparation de l'eau en hydrogène et oxygène en utilisant de l'électricité.

Les méthodes de stockage incluent des réservoirs à haute pression, de l'hydrogène liquide et du stockage à l'état solide.

Stations de ravitaillement en hydrogène

Bien que le nombre de stations de ravitaillement en hydrogène augmente, leur disponibilité reste limitée par rapport aux stations de ravitaillement en essence et aux bornes de recharge électrique. Des efforts d'expansion sont en cours, en se concentrant sur les régions avec une plus grande concentration de voitures à hydrogène.

Principaux fabricants de voitures à hydrogène

Plusieurs constructeurs automobiles ont lancé des modèles de voitures à hydrogène, notamment :

  • Toyota : Mirai
  • Honda : la pile à combustible Clarity
  • Hyundai : Nexo

Voitures à hydrogène vs. véhicules électriques

Bien que les voitures à hydrogène et les véhicules électriques produisent tous deux zéro émission, ils diffèrent sur des aspects clés tels que:

  • Source d'énergie : Les voitures à hydrogène utilisent des piles à combustible, tandis que les véhicules électriques dépendent de batteries.
  • Temps de ravitaillement : Les voitures à hydrogène se ravitaillent plus rapidement, mais les véhicules électriques ont plus de stations de recharge.
  • Efficacité : Les véhicules électriques sont généralement plus économes en énergie que les voitures à hydrogène.

Impact environnemental des voitures à hydrogène

Les voitures à hydrogène ont un impact environnemental positif car elles ne produisent aucune émission nocive. Cependant, l'impact global dépend des méthodes utilisées pour la production, le transport et le stockage de l'hydrogène. Des méthodes de production plus propres, telles que l'électrolyse à partir d'énergies renouvelables, peuvent renforcer leur caractère écologique.

L'avenir des voitures à hydrogène

L'avenir des voitures à hydrogène semble prometteur, avec des avancées continues dans la technologie des piles à combustible, l'expansion de l'infrastructure et le soutien gouvernemental. À mesure que les coûts de production diminuent et que les performances s'améliorent, les voitures à hydrogène pourraient devenir une option plus viable pour une adoption généralisée.

Politiques gouvernementales et incitations

De nombreux gouvernements proposent des incitations pour l'adoption de voitures à hydrogène, notamment des crédits d'impôt, des subventions et des remises. De plus, des partenariats public-privé sont mis en place pour étendre l'infrastructure hydrogène et soutenir la recherche et le développement.

Conclusion

Les voitures à hydrogène offrent une alternative respectueuse de l'environnement aux véhicules traditionnels fonctionnant à l'essence ou à l'électricité. Avec l'avancée de la technologie et l'expansion de l'infrastructure, elles ont le potentiel de jouer un rôle significatif dans l'atteinte de la mobilité durable.

Sources

Fuel Cell & Hydrogen Energy Association - Principes de base des piles à combustible

Lire l'article
Un guide pour comprendre les technologies alimentées à l'hydrogène
Un guide pour comprendre les technologies alimentées à l'hydrogène

Alors que les préoccupations mondiales concernant le changement climatique et la pollution environnementale s'intensifient, la recherche de sources d'énergie durables et respectueuses de l'environnement s'est intensifiée. Une alternative de ce type est le moteur à hydrogène, qui utilise l'hydrogène comme source de carburant propre pour générer de l'énergie. Cet article explore le concept des moteurs à hydrogène, leurs types, avantages, défis et applications.

Types de moteurs à hydrogène

Il existe deux principaux types de moteurs à hydrogène : les moteurs à combustion interne à l'hydrogène (HICE) et les moteurs à pile à combustible à hydrogène. Chaque type présente des caractéristiques et des applications uniques.

Moteurs à Combustion Interne à Hydrogène (MCIH)

Les moteurs à combustion interne à hydrogène fonctionnent de manière similaire aux moteurs à essence ou diesel traditionnels. Cependant, au lieu d'utiliser des combustibles fossiles, ils brûlent de l'hydrogène pour produire de l'énergie. Ces moteurs peuvent être adaptés à partir de moteurs à combustion interne existants, ce qui en fait une option attrayante pour passer à une source d'énergie plus propre.

Moteurs à pile à combustible à hydrogène

Les moteurs à pile à combustible à hydrogène utilisent des piles à combustible pour convertir l'hydrogène et l'oxygène en électricité, qui alimente ensuite un moteur électrique. Contrairement aux moteurs à combustion interne à hydrogène, les moteurs à pile à combustible ne nécessitent pas de combustion, ce qui les rend plus efficaces et respectueux de l'environnement.

Comment fonctionnent les moteurs à hydrogène

Le fonctionnement des moteurs à hydrogène varie en fonction du type de moteur utilisé.

Processus de combustion de l'hydrogène

Dans un moteur à combustion interne à hydrogène, l'hydrogène est mélangé à l'air et comprimé dans les cylindres du moteur. Une bougie d'allumage enflamme ensuite le mélange, provoquant une explosion contrôlée qui génère une puissance mécanique. Cette puissance est utilisée pour entraîner les pistons du moteur et finalement propulser le véhicule ou l'appareil.

Processus des piles à combustible à hydrogène

Dans un moteur à pile à combustible à hydrogène, l'hydrogène et l'oxygène sont introduits dans la pile à combustible, où une réaction électrochimique se produit. Cette réaction produit de l'électricité, de l'eau et de la chaleur. L'électricité ainsi générée alimente le moteur électrique, tandis que l'eau et la chaleur sont expulsées en tant que sous-produits inoffensifs.

Avantages des moteurs à hydrogène

Les moteurs à hydrogène offrent plusieurs avantages par rapport aux moteurs à combustion interne conventionnels, notamment :

  1. Réduction des émissions de gaz à effet de serre : Étant donné que les moteurs à hydrogène produisent de l'eau et de la chaleur comme principaux sous-produits, ils émettent beaucoup moins de gaz à effet de serre que les moteurs fonctionnant aux combustibles fossiles.
  2. Amélioration de l'efficacité énergétique : Les moteurs à hydrogène, en particulier les moteurs à pile à combustible, ont des rendements de conversion d'énergie plus élevés que les moteurs à combustion interne, ce qui se traduit par de meilleures performances globales et une consommation de carburant réduite.
  3. Source de carburant renouvelable : L'hydrogène peut être produit à partir de différentes sources renouvelables, telles que l'électrolyse de l'eau, ce qui en fait une option énergétique durable.

Défis et Limitations

Malgré leurs avantages, les moteurs à hydrogène sont confrontés à certains défis et limitations, notamment :

  1. Coûts élevés : Le développement et la production de moteurs à hydrogène peuvent être coûteux, en particulier pour les moteurs à piles à combustible qui nécessitent des matériaux coûteux tels que le platine comme catalyseurs.
  2. Infrastructure limitée : Les stations de ravitaillement en hydrogène sont rares par rapport aux stations-service traditionnelles, ce qui rend plus difficile l'adoption généralisée des moteurs à hydrogène.
  3. Stockage et transport : Le stockage et le transport de l'hydrogène présentent des obstacles importants en raison de sa faible densité énergétique et de la nécessité de contenants haute pression ou de stockage cryogénique.

Applications des moteurs à hydrogène

Les moteurs à hydrogène sont mis en œuvre dans différents secteurs, notamment :

Transport

Les constructeurs automobiles explorent de plus en plus les moteurs à hydrogène pour les véhicules, tels que les voitures particulières, les bus et les camions. Des entreprises comme Toyota, Hyundai et Honda ont lancé des véhicules fonctionnant à l'hydrogène, tandis que d'autres continuent de développer de nouveaux modèles.

Production d'énergie stationnaire

Les moteurs à hydrogène peuvent également être utilisés pour la production d'énergie stationnaire, offrant une alimentation de secours aux bâtiments ou aux endroits isolés. Ils proposent une solution énergétique propre, fiable et efficace, notamment dans les régions où l'accès à l'électricité du réseau est limité.

Aéronautique et aviation

Les industries aérospatiales et de l'aviation étudient les moteurs à hydrogène comme une alternative aux moteurs à réaction conventionnels. Plusieurs entreprises développent des avions propulsés à l'hydrogène, dans le but de réduire les émissions et d'augmenter l'efficacité des voyages aériens.

Perspectives futures et développements

La demande en sources d'énergie propres et durables devrait augmenter et les moteurs à hydrogène joueront probablement un rôle important. Les efforts continus de recherche et développement visent à améliorer l'efficacité, la rentabilité et l'infrastructure des moteurs à hydrogène, afin de les rendre plus accessibles et répandus.

Conclusion

Les moteurs à hydrogène offrent une alternative prometteuse aux moteurs à combustion interne traditionnels, avec le potentiel de réduire considérablement les émissions de gaz à effet de serre et la dépendance aux combustibles fossiles. Bien que des défis subsistent, les avancées continues dans la technologie des moteurs à hydrogène et dans les infrastructures pourraient ouvrir la voie à un avenir plus durable et respectueux de l'environnement.

Lire l'article
Comprendre la production d'hydrogène vert : de la molécule à son utilisation
Comprendre la production d'hydrogène vert : de la molécule à son utilisation

De la production de l'hydrogène par extraction à l'utilisation de la molécule... Lhyfe, producteur d'hydrogène vert, explique tout sur le cycle de vie de l'hydrogène renouvelable tel qu'il est fabriqué par Lhyfe.

Quelles sont les étapes de la production d'hydrogène renouvelable ?

Voici les trois étapes de la production d'hydrogène renouvelable de Lhyfe. Les unités de production de Lhyfe produisent sans aucune émission de CO2 (contrairement à l'hydrogène carboné).

Électrolyse de l'eau

L'hydrogène est produit à partir de l'eau provenant des rivières, de l'océan, de la pluie ou des lixiviats. L'électrolyse est un processus qui permet de rompre les liaisons chimiques des molécules H2O. Elle est réalisée à l'aide d'énergies renouvelables. Au cours de ce processus, de l'oxygène est libéré dans l'air. En revanche, il n'y a aucune émission de dioxyde de carbone (CO2).

Compression d'hydrogène (H2)

Ce processus réduit le volume d'hydrogène et augmente la pression.

Purification de l'hydrogène

À cette étape, les traces restantes d'oxygène (O2) et d'eau (H2O) sont éliminées.

Comment l'hydrogène renouvelable est-il transporté ? À quelles fins ?

L'hydrogène peut être stocké dans des conteneurs à l'extérieur de l'usine. Il est ensuite transporté par camion. L'hydrogène produit peut ensuite être utilisé pour :

  • Transport : L'hydrogène produit peut alimenter les véhicules à hydrogène. Ces véhicules, par conséquent, ne rejettent aucune émission de CO2 lorsqu'ils sont conduits.
  • Industrie : l'hydrogène livré peut également être utilisé pour alimenter les usines (en petites quantités).

Lorsqu'il est utilisé à grande échelle dans l'industrie, l'hydrogène peut être transporté directement par connexion de tuyauterie. Cela permet d'alimenter l'usine pour les utilisations suivantes :

  • verre
  • acier
  • fabrication de produits alimentaires
  • plastiques
  • ...


La production d'hydrogène de Lhyfe est réalisée à partir d'énergies renouvelables. C'est pourquoi nous l'appelons "vert". Il s'agit d'un moyen efficace de décarboner votre entreprise !

Lire l'article
Retour à tous les articles sur l'hydrogène